
Industrial Intralogistics – Improving an
Autonomous Mobile Robot Learning Platform

Matija Markulin, Daniel McGuiness (supervisor), Benjamin Massow (supervisor)

Abstract—This paper shows an implementation of Au-
tonomous mobile robots (AMRs) in industrial logistics and
their use in improving MCI’s AMR learning platform.
This is achieved by using Turtlebot4 mobile robots made
by Clearpath Robotics in a model of an industrial logistics
center and controlling them by remote PC using ROS2
(Robot operating system) infrastructure and its navigation
libraries. The robots are programmed in Python using
ROS2 APIs (application program interfaces) which allow
for easily discernable code for teaching this subject. The
produced source code for robot operation, as well as
detailed instructions for system setup, are assembled in ap-
propriate teaching material for MCI’s learning platform.

Index Terms—ROS2, Turtlebot4, Autonomous mobile
robots, SLAM, navigation

I. INTRODUCTION

Intralogistics, management and delivery of the
materials within the industrial complexes, is an
important part of modern warehouse management
systems. It enables the seamless movement of goods
within the system and raises the overall production
efficiency. Lately, autonomous mobile robots (AMRs)
are becoming a more and more important part of any
intralogistics system. AMRs are the area of robotics
that has been quickly developing in recent years
due to further developments in the miniaturization
of computing components making it possible to
incorporate all the necessary components into a mobile
system. With the autonomous navigation capabilities
of AMRs, it becomes possible to introduce automated
logistics solutions even in dynamic environments where
conventional mobile robots with predefined paths would
be impossible to implement. With the adaptability
of AMRs, it is possible to automate the existing
warehouses with minimal expenses for adapting the
space itself or even to have a combined workspace
where humans and robots can work alongside each
other without any danger to either.

Complexities of the AMR systems require experts in
robot programming to set up the system like this. These
experts need to be taught during their studies and that
requires a robust learning platform.

The setup of one such system on the model of the
logistics center will be shown in this paper, as well as
its arranging in a learning platform for future generations
of students.

II. PREVIOUS WORK

In previous work [1], the basic setup and usage of
robots are explained for the beginner robot programmers
to get familiar with programming the robots with ROS.
It explains basic robot commands and the structure of
the ROS2 communication network but does not explain
the usage of localization or navigation libraries.

There are also official tutorial pages [3] for the usage
of the robots, but they provide tutorials for a few different
setups of the robot, and this learning platform will focus
on the one present in MCI’s laboratories. Official tutori-
als also only briefly touch upon the topic of navigation
and only with one robot, and this project also goes into
the navigation of multiple robots at the same time.

III. OBJECTIVES

The objective of this project is to create a model
of an industrial logistics center as shown in figure 1
and program the robots to autonomously navigate to the
predefined coordinates in space. Once the setup is done
it is explained in detail and made into a comprehensive
learning platform to be used at MCI in the future

IV. METHODS

This project is realized using Turtlebots, cost-effective
modular mobile robots equipped with all of the neces-
sary sensors for autonomous navigation. The robots are
programmed in Python using ROS2 (Robot operating
system) communication framework. ROS2 is an open-
source system that provides communication between PC
and robots.



Fig. 1: Model of an industrial logistics center

A. Turtlebot

Turtlebots, shown in figure 2, are AMRs developed by
Clearpath robotics whose fourth iteration was used in
this project. Turtlebot4 is equipped with an RPLIDAR-
A1 LiDAR system, an OAK-D-PRO computer vision
camera, and an IR proximity sensor on the front bumper.
The robot also has an integrated Raspberry Pi 4 computer
for control of the robot. According to [2], the robot’s
max payload is 9 kg, but with slight modifications to the
robot and its software, it can be increased to 15 kg.

Fig. 2: Turtlebot4 [2]

B. ROS2

ROS2 [5] is a second iteration of the open-source
robot programming framework. It is built on the
foundation of ROS1 with improvements in real-time
applications and intercommunication of all the systems.
Due to the incorporation of a distributed communication
framework, ROS2 can seamlessly support the work of
multiple robots and computers.

The main way in which ROS operates is through
subscribers and publishers. Each of the programs running

on the ROS network is called a node, and each of the
nodes can have multiple subscribers and publishers. The
publisher broadcasts its data on the network on its topic.
Unlike ROS1, in ROS2 publishers broadcast the data
on the topic only once when instructed in the code and
have no traffic in the meantime. Subscribers on the other
hand ”listen” to the topic and each time it receives the
message a callback function is called, that can process
the received message according to the requirements of
the program.
Other than topics ROS nodes can also communicate

Fig. 3: Example of publisher and subscriber communi-
cation [1]

using services and actions. Services are setup in the way
of server and clients, where a client sends the request
to the server, the server executes needed commands and
sends the client the response

Fig. 4: Example of service [1]

Actions also work on the principle of server and client
but with an even more complex communication structure.



A client asks the server to do something, and the server
then confirms the acceptance of the task, carries it out,
and confirms the execution along with returning the data
produced by the action to the client (if there is any).

Fig. 5: Example of action [1]

ROS2 distribution used in this project is Humble
Hawksbill, LTS (long time supported) version at the time
of realizing this project1

C. SLAM and localisation

SLAM (simultaneous localization and mapping) is
a technique used for mapping an unknown area while
simultaneously estimating the robot’s position within
the environment.

Most SLAM algorithms implement probabilistic
calculation methods. At first robot’s location has no
uncertainty and the first features of the environment
have uncertainty coming from the LiDAR. Then as the
robot moves its location becomes more uncertain due
to uncertainty in wheel motor encoders and each new
feature of the environment has even larger uncertainty
that comes from the product of robot position uncertainty
and sensor uncertainty. Then when the sensor registers
the first feature after further driving the uncertainty of
the robot’s position can be reduced by comparing it
to the uncertainty of the feature, and because of that
can reduce the uncertainty of the position of all other
features.

From this, it can be seen that SLAM is a hard
problem to solve, but it has been a topic of research for

1New LTS version (Jazzy Jalisco) was released during the making
of this project but the support for Turtlebot4 for this version is not
yet available.

many years and there are now libraries that can quite
efficiently solve this problem.

These libraries can then be used to map the envi-
ronment, as shown in figure 6, to be used later in the
working of the robot because there is no need to run
resource-heavy SLAM algorithms if the environment is
mostly static with some dynamic elements (ie. shelves
and workstations are fixed but there could occasionally
be a pallet of the goods on the floor). In cases like
this localization library can be used to find the robot’s
position in the environment and to see the unexpected
obstacles but the base map that was created before can
be loaded into the program.

D. Navigation

For the navigation Nav2 package was used. Nav2 is
a modular robotics navigation stack based on plugins
that can be developed independently and changed to the
version appropriate for the current application.

Nav2 is used to calculate the optimal path through
the environment to get to the goal with regard to a
map of the environment (whether loaded from file or
generated by SLAM) and input from the sensor alerting
to new obstacles in the way. The calculation of the path
is conducted with the use of a map that is structured in
several layers.

The first layer is the dark purple one in figure 7 repre-
senting the static map of the environment. The pink lines
are the current readings of the obstacles from the LiDAR
and are also taken into account during path planning if
they do not align with the static map. An example of
that is pink spots on the map which are caused by other
robots that are docked around the parameter but were not
there when the map was recorded. The next layer is the
inflation layer which consists of light blue and pink/blue
areas around it. The blue area of the inflation layer is
space that the robot is not supposed to go in and is used
to take in account the size of the robot to prevent it from
hitting the walls. The pink/blue area is a slow-down zone
that is used to slow down the robot in the proximity of
the walls

E. Robot operation nodes

Finally with the use of all of the aforementioned
systems ROS2 nodes for robot operation can be
programmed. Two scripts are created, one to take care
of the navigation of individual robots and the master



(a) Begging of mapping

(b) End of mapping

Fig. 6: Mapping the work environment using SLAM

node to monitor them and give out tasks to said robots.
Individual robot script is run multiple times creating
ROS2 nodes for the control of each of the robots, and
the master script is run only once and handles the
operation of the swarm.

In an ideal case robots could communicate with each
other easily thanks to ROS2 architecture, but the band-
width of the Turtlebot’s WiFi antenna is very limited and

Fig. 7: Nav2 map layers

even a couple of robots running on the same network
can make the connection between PC and robot to slow
for real-time control [4]. Due to that, the network is
set up in a way that each robot can communicate only
to the master node, but not to the other robots which
greatly hampers Turtlebot’s collaboration and swarm
capabilities.

V. SOLUTION SETUP

A. Robot setup

The first step in the development of a model of
the logistics center is to set up the robots and their
connection to the ROS2 framework. While a similar
setup was done in [1] due to updates to the ROS2 and
Turtlebot4 integrations it needs to be brought in line
with the current version and to have all of the robots
on the same edition of the software which was not
the case before. As stated previously Humble Hawksbill
distribution of ROS2 is used and the support packages
for it need to be installed on the Turtlebot. That is done
by following the instructions from [3]. The easiest way
to update all of the robots to the current versions of the
software would be to simply update all of their Debian
packages, but the network the robots are connected to
is not connected to the internet so that is not an option.
Instead, the latest Turtlebot4 disc image was flashed to
the SD card of each of the robots bringing them to the
current software version.

B. PC setup

This robotics learning platform is primarily intended
for use in a Linux environment. Recommended OS for
use with ROS2 is Ubuntu Linux - Jammy Jellyfish
(22.04). Ubuntu can be installed either natively or within
a virtual machine. Proper installation of Ubuntu would
offer a bit more computing power, but if the user of the



learning platform does not have it already installed, a
virtual machine offers much easier access to the use of
the Linux platform

ROS2 packages for Linux can be installed either
as a Debian package or from source. We chose to
use the Debian package installation because it is more
convenient than the installation from the source. Since
this thesis is developing the learning platform it will
not be concerned with editing the ROS2 source code so
there is no need to install it in that way. The Debian
installation offers a much easier start to using ROS2
with the installation in just a few terminal commands.
Turtlebot4 specific packages can be then installed in the
same way. The exact process of installation is shown on
the learning platform. After all the needed packages are
installed robots can be programmed with PC over ROS2
system.

C. Environment setup

While most of the features of the Trutlebots can be
used and learned in a simulated environment, the use of
real robots and all of the challenges that come with that
offer a much better understanding of robots and all of
the problems a future engineer might run into. For that,
a safe and controlled environment was needed.

The location for the robot’s working area is the aula
of the MCI 4 building. There an area was fenced in, as
shown in figure 8, so that the robots can’t get everywhere
in the aula and get in the way. A few obstacles were
placed in the area to showcase how robots can navigate
around. Inside the area, there are a couple of obstacles
to showcase the robot’s ability to dodge obstacles.

Fig. 8: Robot’s working area

VI. NAVIGATION SOLUTION

A. Using RVIZ for navigation

The robots and the PC are now set up and the working
environment is prepared so it is time to start navigating
the robots in that environment. For that, we will use the

map created like it is explained in section IV-C. Now
that there is a map another thing that is needed for the
localization is the robot’s approximate initial position.
The initial position can be given either through the RVIZ
tool by hand or as a part of the navigation code. For
the localization and navigation with RVIZ, those nodes
first need to be started. Through RVIZ initial position
can be set by use of the 2D pose estimate tool in the
toolbar. The tool can be used as shown in the figure 9.
The beginning of the arrow represent the location of the
robot and it points in the way the robot is orientated. It
can be seen that at this point RVIZ reports some errors
in the system but those are due to the robot’s unknown
position so RVIZ can’t place it on the map and thus
throws an error, as soon as the initial position is given
and the robot is localized the errors will disappear.

Fig. 9: Setting the initial pose

Once the robot is successfully localized the navigation
can start. For that Na2 goal tool form the same toolbar
can be used. It functions in the same way as the 2D pose
estimate tool for marking a pose. Once the pose is given
with this tool Na2 stack will calculate the optimal path
to the goal and navigate the robot there.

B. Naviagtion of single robot

After we have seen how to navigate the robot ”by
hand” using RVIZ lets have ROS2 do it all for us.
For that the package Turtlebot4Navigator is used. That
package contains a child class to the Nav2’s simple
navigator class, with some Turtlebot4 specific functions,
like docking and undocking. For the navigation the
object of said class is created. Then robot’s approximate
coordinates are given to that object to localize the robot.
After the successful localization, the goal coordinates
can be given and the Nav2 stack will take care of nav-
igating the robot to the appropriate location. There are
multiple ways to instruct the robot motion, for example



only giving one point to navigate to or giving multiple
points along the way that will define the trajectory.

Fig. 10: One robot navigating the environment

C. Navigation of multiple robots

The problem of navigation of multiple robots becomes
somewhat more complex if any level of cooperation is
expected between them. If there is no cooperation each
robot could just separately run single robot navigation as
explained in the previous section without any concern for
the others. But for cooperation, a more complex structure
is needed. That structure will require separate ROS2
nodes to handle the navigation and communication. One
will be run for each robot individually and will take
care of controlling that robot and processing its data.
The other node will collect the data from all of the
individual robot’s nodes, process it, and coordinate the
task assigned to each of the robots.

For this setup the master node chooses the robot for
the next task based on its docked status and its battery
charge. The robot deemed appropriate for the task is then
given the next set of coordinates to navigate to. In this
example, the master node has a simple set of tasks for
robots and a simple decision basis for which robot to
assign the task to, but this setup can be easily modified
for much more complex tasks without major changes to
the overall setup.

VII. LEARNING PLATFORM

In the end all of the code developed here is assembled
into an online learning platform for future students, a few

Fig. 11: Two robots navigating the environment

example pages of the learning platform are in figure 12.
The basis of the platform was created in [1] and this
project is expanding on it with the topics of autonomous
navigation which is a crucial part of creating a working
intralogistics model.

New parts of the learning platform go over the topics
of PC setup in order to use multiple robots at once, how
SLAM and Nav2 work, how to map the environment,
how to navigate the single robot, and how to navigate
multiple of them.

(a) Homepage

(b) Navigator class explanation

Fig. 12: Learning platform example pages



Each of the topics explains the theoretical background
and exact method how to use any of the functions. The
code needed for any of the steps is broken down and
explained step-by-step to allow maximal understanding
of it.

VIII. CONCLUSION

The problem of intralogistics has presented an inter-
esting angle to teach the students how to use autonomous
mobile robots. This application of AMRs offers a great
combination of various robotics skills that are needed
to realize this solution successfully. While multiple
problems and difficulties were encountered during the
development of this application they all offer an insight
into the engineering method and a crucial part in learning
how to create robotic solutions.

Coupling the ROS2 framework with Turtlebot4 cre-
ates the perfect environment for the learning of mobile
robotics. Turtlebot4 is easy to setup AMR that incorpo-
rates all of the needed functionalities while also making
it very modular and adaptable to the application at hand.
It has all of the needed sensors already integrated into
the robot, and with RasperyPi on board, it can easily be
adapted to any job it might be needed for.

REFERENCES

[1] Christian Schuster, ”Industrial Intralogistics – Developing an
Autonomous Mobile Robot Learning Platform using the ROS2
Framework”, Master’s thesis

[2] https://clearpathrobotics.com/turtlebot-4/
[3] https://turtlebot.github.io/turtlebot4-user-manual/
[4] https://github.com/turtlebot/turtlebot4/issues/408
[5] S. Macenski, T. Foote, B. Gerkey, C. Lalancette,

and W. Woodall, “Robot operating system 2: Design,
architecture, and uses in the wild,” Science Robotics,
vol. 7, no. 66, p. eabm6074, 2022. [Online]. Available:
https://www.science.org/doi/abs/10.1126/scirobotics.abm6074


